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Abstract

The compressed sensing (CS) theory requires the signal to be sparse under some

transform. For most signals (e.g., speech and photos), the non-adaptive transform

bases, such as discrete cosine transform (DCT), discrete Fourier transform (DFT), and

Walsh-Hadamard transform (WHT), can meet this requirement and perform quite

well. However, one limitation of these non-adaptive transforms is that we cannot

leverage domain-specific knowledge to improve CS efficiency. This study presents a

task-adaptive eigenvector-based projection (EBP) transform. The EBP basis has an

equivalent effect of the principal component loading matrix and can generate a sparse

representation in the latent space. In a Raman spectroscopic profiling case study, EBP

demonstrates better performance than its non-adaptive counterparts. At the 1% CS

sampling ratio (k), the reconstruction relative mean square errors of DCT, DFT, WHT

and EBP are 0.33, 0.68, 0.32, and 0.00, respectively. At a fixed k, EBP achieves much

better reconstruction quality than the non-adaptive counterparts. For specific domain

tasks, EBP can significantly lower the CS sampling ratio and reduce the overall mea-

surement cost.
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1 INTRODUCTION

In the field of information theory, compressed sensing (CS) breaks

through the minimum required sampling rate, as required by the tra-

ditional Shannon-Nyquist sampling theorem (the sampling rate be at

least twice the interested component’s frequency). In engineering, CS

has the following advantages1: (1) Require fewer data to be sampled

and stored. (2) Enhance the analog-to-digital conversion (ADC) effi-

ciency. (3) Reduce measurement requirements and save sensor cost.
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Because of these benefits, CS has been widely applied in various

research and commercial applications, such as medical imaging,2,3 bio-

chemical analysis,4 single-pixel imaging,5 remote sensing,6 etc.

A key issue in CS is basis selection. A basis Ψ defines a trans-

form that maps the original signal to a latent space. The theory of

CS requires this latent representation to be as sparse as possible.

The sparsity degree determines the minimum sampling rate and the

maximum signal reconstruction quality. Mathematically, Ψ is a uni-

tary matrix, that is, ΨH = Ψ−1. The most commonly used bases include
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F IGURE 1 A typical compressed sensing workflow. x is the original signal/data.Φ is the sensingmatrix.Ψ is a transform basis. z is the latent
representation of x underΨ.ΨH is the conjugate transpose ofΨ. xs is the sampled data fromCS. xs is the actual data transmitted to the receiver
side. xr is the reconstructed data from xs

discrete cosine transform (DCT), discrete Fourier transform (DFT), and

HWT (Hadamard-Walsh transform). These bases are general-purposed

and “non-adaptive.” We argue that there could exist better “adaptive”

counterparts for specific tasks. However, basis design/selection is non-

trivial and requires prior knowledge about the domain signal’s statis-

tical characteristics. This paper’s primary goal is to find and validate

such a task-adaptive transform that suits the spectroscopic profiling

applications. Spectroscopic profiling is a family of analytical chemistry

instruments. It mainly includes vibrational spectrometry (e.g., violet,

infra-red, and Raman), NMR (nuclear magnetic resonance), mass spec-

trometry, and their coupled use, for example, surface-enhancedRaman

scattering, matrix-assisted laser desorption/ionization time-of-flight

mass spectrometry (MS), inductively coupled plasmaMS. In a previous

CS study,7 we used non-adaptive transforms for Raman spectroscopy.

In complement to the previous research, this paper will study adaptive

transforms.

The structure of the paper proceeds as follows. (1) The first part

is a brief review of the CS theory. (2) The second part describes the

EBP transform. (3) The third part is a spectroscopic profiling case study.

Finally, a comparison between EBP and non-adaptive counterparts is

provided.

2 THEORY

2.1 A recap of CS

A typical CS workflow contains the following procedures (Figure 1):

(1) Sensing/encoding. In this step, a transform basis matrix Ψ must be

pre-determined. Ψ defines a latent space in which the original x has

a sparse representation z, that is, x = Ψz. A sensing matrix Φ is then

applied to x to perform a sub-Nyquist sampling, that is, xs = Φx.Φ has a

dimensionality of (kn×n). k is the sensing ratio. (2) Signal transmission.

xs is transmitted to the receiver side. The signal length of xs is ns = kn.

Typically, k<< 1. A small kmeans a bigger information loss but a higher

signal compression effect. In this sense, CS can significantly reduce

the transmission payload and bandwidth requirement. (3) Reconstruc-

tion/decoding. Denote A = ΩΨ as themeasurementmatrix. A has kn×n

dimensions. Because kn < < n, rank(A) = kn (full row rank). Thus Az =

xscorresponds to an underdetermined linear system, which has more

unknowns than equations. Because of the CS basic assumption (under

Ψ, z is sparse), we need to find a sparse candidate z. This can be solved

by minimizing the L0 (NP-hard, seldom used) or L1-norm. Finally, the

signal can be restored by z. Because Ψ is a unitary matrix, ΨH = Ψ−1.

Withz = ΨHx, the reconstructed data xr = Ψz.

In the above workflow, the transform basis matrix Ψ plays an

essential role. It not only determines the minimum sampling ratio

but also decides the signal reconstruction quality. The following sec-

tion will introduce some of the most commonly used non-adaptive

transforms.

2.2 Commonly used non-adaptive transforms

Table 1 lists threewidely used non-adaptive transforms, includingDCT,

DFT, and HWT (Hadamard-Walsh transform). These transforms can

suit most signals (except inherently stochastic ones or white noises)

encountered in our daily lives. For example, Joint Photographic Experts

Group internally uses DCT, based on the general fact that a photo has

most of its information concentrated in only a few low-frequency com-

ponents (i.e., sparse under DCT).

3 METHOD

3.1 Problem statement

Being “non-adaptive” is a double-edged sword. On the one hand, non-

adaptive transforms do not need to make any specific assumptions

on the domain signal, yet they can perform reasonably well in general
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TABLE 1 Commonly used non-adaptive transforms and their bases

Transforms Basis matrix𝚿

discrete cosine transform (DCT) DCTN,N =
1√
N

⎡⎢⎢⎢⎢⎢⎣

1 1 ⋯ 1√
2 cos(

𝜋

2N
)

√
2 cos(

3𝜋

2N
) ⋯

√
2 cos(

(2N−1)𝜋

2N
)

⋮ ⋮ ⋱ ⋮√
2 cos(

(N−1)𝜋

2N
)
√
2 cos(

3(N−1)𝜋

2N
) ⋯

√
2 cos(

(2N−1)(N−1N−1)𝜋

2N
)

⎤⎥⎥⎥⎥⎥⎦

discrete Fourier transform (DFT) DFTN,N = (
𝜔jk

√
N
)j,k=0,…,N−1 =

1√
N

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜔0 𝜔0 𝜔0 ⋯ 𝜔0

𝜔0 𝜔1 𝜔2 ⋯ 𝜔N−1

𝜔0 𝜔2 𝜔4 ⋯ 𝜔2(N−1)

𝜔0 𝜔3 𝜔6 ⋯ 𝜔3(N−1)

𝜔0 ⋮ ⋮ ⋱ ⋮

𝜔0 𝜔N−1 𝜔2(N−1) ⋯ 𝜔(N−1)(N−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
whereω= e−2π i/N = cos(−2π/N)+ isin(−2π/N)

HWT (Hadamard-Walsh

transform)*

HWT(2N ) =
1√
N∕2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 ⋯ 1 1

1 −1 1 −1 ⋯ 1 −1

1 1 1 1 ⋯ 1 1

1 −1 1 −1 ⋯ 1 −1

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

1 1 1 1 ⋯ 1 1

1 −1 1 −1 ⋯ 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
*The HWT basis must be padded to 2N dimensions.

F IGURE 2 Use SVD to generate the EBP basis. The image shows the following steps: (1) Collect domain signal samples to construct the
training set X. (2) Perform SVD on X. (3) Use the last rotational factor V as the EBP basis for CS reconstruction. Any new signal sample from the
same domain is expected to be sparse under EBP

cases. On the other hand, they cannot leverage any domain-specific

prior knowledge, putting them in a disadvantageous status for con-

crete tasks. Therefore, this study’s primary goal is to present and

validate a task-adaptive transform that better suits spectroscopic

profiling signals.

3.2 Eigenvector-based projection transform

3.2.1 Basis generation

This section presents an eigenvector-based projection (EBP) transform

based on singular value decomposition (SVD). The SVD is a matrix fac-

torization technique that decomposes a matrix into three parts: X =

USVT .U andV areorthogonal (alsounitary). Columns inU are left eigen-

vectors. Columns inV are right eigenvectors. S is diagonal. The diagonal

elements in S are called singular values. U and V represent the “rota-

tional” factors in X, while S represents the “stretching” factor in X.

Figure 2 shows the EBP basis training process. First, we need to col-

lect sufficient domain signal samples. “Being sufficient” means these

samples should capture enough distribution information (variance in

the sense of SVD). Withm samples of the n-dimensional signal, we will

construct anm×nmatrixX. Then, performSVDonX. The last rotational

factor V is essentially a group of eigenvectors. V can be used as an EBP

transform basis in the CS scenario.

The following sectionwill describe EBP’s relationship with PCA.We

will see that the EBP basis V is also the left rotational factor of the

covariance matrix in PCA. It equals the component loading matrix and

has an “information concentration” effect. Applying V to a new signal

from the same domain is expected to get a sparse projection.
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F IGURE 3 The averaged Raman signal of 310 vintage liquor samples with± 3 standard deviations (99.74% samples will fall in this region). The
shaded region is the deviation region

3.2.2 Relationship with PCA

EBP is also closely related to principal component analysis (PCA). PCA

involves the SVD of the covariance matrix (
XTX

m
, X is demeaned), as fol-

lows.

Cov =
XTX
m

= (VSTUT )USVT∕m = V(
STS
m

)VT Δ
= VΛVT

Λ is a diagonal matrix of eigenvalues. Because Λ =
STS

m
, so each

eigenvalue equals the square of singular value divided by the number

of observations, that is, 𝜆i =
s2
i

m
. The above uses the biased version of

the covariancematrix. The unbiased version is Cov =
XTX

m−1
.

In the context of PCA, V is the component loading matrix. By only

keeping the firstK row eigenvectors inV, X (anm×nmatrix) can be pro-

jected into an m×K matrix in the PCA latent space. Typically, K < n, so

PCA has a dimensionality reduction effect. It also comes with a lossy

compression effect, with information loss=
∑n

K+1 𝜆i∕
∑n

1 𝜆i.

For a specific domain dataset X, the first few eigenvectors from

SVD are projection directions that capture most signal informa-

tion/variance. After EBP, the transformed representation z in the latent

space will be very sparse. In the following part, we will carry out a case

study to verify EBP and compare it with non-adaptive ones.

3.3 Mathematical symbols and glossary

The mathematical symbols used in this manuscript are provided in

Table 2.

4 CASE STUDY

4.1 Dataset

Background: The purpose of this case study is to profile vintage liquors

with Raman spectroscopy. Raman spectroscopy is a vibrational spec-

troscopic technology.8 Researchers have used Raman spectroscopy to

profile various materials and products, such as wines,9 herbs,10 oil,11

milk.12 At the core of the Raman spectroscopy is a charge-coupled

device sensor, which can be enhancedwith CS to speed up the ADC.

Dataset: A Raman spectroscopic dataset of 310 vintage liquor sam-

ples. These samples are from five batches of 8-year Gujing Tribute (�

��, a national geographical iconic brand of China) vintage liquor. Fig-

ure 3 plots the averaged signal.

Instrument: Prott-ezRaman-D3 Raman spectrometer, manufactured

by Enwave Optronics, US. Spectral resolution: 1 cm–1. Spectral range:

251∼ 2338 cm–1.

4.2 Signal sparsity analysis in the latent space

CS requires the signal to be “sparse” under a specific transform. The

sparsity of the transformed signal z determines the minimum sampling

ratio k. The basis that generates the sparsest representation in the

latent space is considered the best. Therefore, we first perform a pre-

liminary sparsity analysis on different CS transforms. In Figure 4, the

second column shows each transform’s z in the latent space. (1) For

identify matrix (IDM), z= x, that is, the transformed signal z equals the

original signal x. (2) DCT and DFT have sparse z in the latent space.

Most of the energy concentrates in the low-frequency components.

(3) ForHWT, thenon-zeroelements in zareevenlydistributed (not con-

centrated). (4) EBP has the sparsest z representation. Considering z’s

sparsity, EBP is expected to performbetter than its non-adaptive coun-

terparts.

The last four columns in Figure 4 are the reconstructed results

under different transforms and sampling ratios. By comparing the

reconstructed signals, we have the following observations: (1) When

k = 0.01, ns = 20. It means using only 20 points to reconstruct the

original 2088 points. With such limited information, the reconstruc-

tion of the non-adaptive transforms is quite messy. In contrast, EBP

has a near-perfect reconstruction. (2) With k increases, more infor-

mation is reserved, and the reconstruction quality gradually improves.

(3) Regarding the reconstruction quality, EBP > DCT > DFT > HWT.

At the same k, the reconstructed signals of DFT and HWT are more

“spiky/noisy” than DCT.
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TABLE 2 Symbols and terms

Symbol/Term Explanation

CS Compressed sensing

Shannon-Nyquist
theorem

To prevent aliasing, theminimum sampling rate is twice the interested component’s frequency.

n The original signal dimensionality. The length of the source signal.

m The number of samples/signals/observations.

k CS sampling rate, i.e., the percentage to be sampled from the original signal. Value range is (0,1). A lower kmeans higher

sampling efficiency but more info loss.

Φ Sensingmatrix. A kn-by-n squarematrix.

Ψ A transform basis. An n-by-n squarematrix.Ψ is a unitarymatrix, i.e.,ΨH = Ψ−1.

A Themeasurementmatrix. A = ΩΨ.

x The original sample/observation/signal.

X The training dataset. Anm-by-nmatrix.

z Signal representation in the latent space. z = ΨHx

xs Sampled signal. xs = Φx = ΦΨz = Az

ns The dimensionality of the sampled signal xs . ns = kn. In CS, ns means howmany points to be randomly picked from the

original signal x.

xr Reconstructed signal.

rank The number of linearly-independent column/row vectors of a matrix. For themeasurementmatrix A, rank(A)= kn.

column space The column space of matrix A is the set of all possible outputs of Av⃗ (v⃗ is any arbitrary vector).

null space The set of vectors that become0⃗ (lose their identities) after transform A, i.e., all solutions toAv⃗ = 0⃗. Column space is also

known as the kernel of a matrix.

Because Av⃗ = 𝜆v⃗, the eigenspaces of A are the null spaces of A − 𝜆I.
The general solution for the underdetermined linear system Az = xs can be represented as zsp + z0, where zsp is a
specific solution and z0 ∈ null(A). This is due toA(zsp + z0) = Azsp + Az0 = xs + 0⃗ = xs

nullity The dimension of the null space/kernel.

Underdetermined linear
system

In CS, Az = xs defines an underdetermined linear system (withmore unknowns than equations), as themeasurement

matrix A is a full row rankmatrix, i.e., kn< n.

rank-nullity theorem rank(A)+ nullity(A)= column number(A), i.e., the nullity of A is the complement to its rank.

I, or IDM An identity matrix

DCT Discrete cosine transform

DFT Discrete Fourier transform

HWT Hadamard-Walsh transform

EBP Eigenvector-based projection

SVD Singular value decomposition

U The first orthogonal matrix (left “rotational” factor) of SVD. Columns inU are left eigen vectors.

S Themiddle diagonal matrix from SVD. S represents the “stretch” factor in X. The diagonal elements are singular values.

si The i-th singular value in S

V The second orthogonal matrix (right “rotational” factor) of SVD. Columns inV are right eigenvectors. In the context of

PCA, V is the component loadings.

PCA Principal component analysis

K In PCA, K (capital) is the number of principal components to be kept.

Cov The covariancematrix. Cov of a de-meanedmatrix X is
XTX

m
(biased estimator) or

XTX

m−1
(unbiased estimator).

Λ Eigen-valuematrix.Λcomes from the SVD of Cov. Each diagonal element is an eigenvalue.

Cov = XTX

m
= (VSTUT )USVT∕m = V( S

TS

m
)VT Δ

= VΛVT, so Λ =
STS

m

λi The i-th eigenvalue inΛ. It is related to si by 𝜆i =
s2i
m
.

MSE Mean square error.MSE =
||x−xr ||2

n
. MSE is used tomeasure the reconstruction error of xr .

RMSE Relativemean square error. RMSE =
||x−xr ||2
||x||2

SNR Signal-to-noise ratio. SNR = ||x||2
||x−xr ||2 =

1

RMSE
. It can also bemeasured in dB as 10 log

10
(SNR).
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F IGURE 4 CS reconstruction results of different transform bases at varied sampling ratios. The last four columns display the reconstructed
signal (xr) at different k levels. Each column corresponds to a specific k value, while each row is for one transform. IDM’s z (in the first row and
second column) equals the original signal x and is the ground truth for reconstruction

In the next section, we will use cross-validation (CV) to compare

their signal reconstruction qualities.

4.3 Evaluation strategy

To evaluate the different CS transforms, we may consider existing

CV or bootstrapping strategies. Although both are resampling meth-

ods, CV is more dedicated to model evaluation, while bootstrapping is

more used in statistical parameter estimation and ensemble learning.

In actual datasets, the k-fold cross validation arguably performs better

than others.13 In this study, we choose repeated double k-fold CV (rdk-

CV).14,15 The outer loop of rdk-CV is a repeated 10-fold CV, and the

inner loop is another five-fold CV for optimizing the CS reconstruction

hyper-parameters.

Each CV iteration includes the following steps.

4.3.1 Basis training

The training set is used to construct the EBP basis by the SVD decom-

position (Figure 2). Three non-adaptive transform bases, that is, DCT,

DFT, and HWT (Hadamard-Walsh transform), are generated by their

definitions (Table 1). They don’t need an explicit training process. The

identity transform is also included as a theoretical baseline. Its basis is

simply an IDM.

The bases of IDM, EBP, DCT, and DFT are all 2088 × 2088 square

matrices, whereas theHWTbasis is 4096× 4096, asHWT requires the

basis’s dimension to be 2N. The generated bases are plotted in the first

column of Figure 4.

4.3.2 CS

Perform CS on the test set under different transform bases and k

values. Because the source signal x is an n-dimensional (n = 2088)

vector, performing CS on the source signal equals randomly drawing kn

(k is the sampling ratio. 0< k≤1) points from x. Therefore, the length of

xs is ns = kn. For goodADC efficiency, k should be small. However, small

k also means big information loss and low reconstruction quality. In

real applications, users should weigh the pros and cons when choosing

k value. This study will try a wide range of k values, that is, 0.01, 0.1,

0.2, and 0.5.

4.3.3 Reconstruction

In CS reconstruction, we use Least Absolute Shrinkage and Selection

Operator16 (LASSO) to solve L1-norm minimization. In the inner loop
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F IGURE 5 Averaged CS reconstruction time of different transform bases

TABLE 3 Signal reconstruction qualities. k=CS sample ratio,
ranging from 0 to 1.0. ns = howmany points are samples from the
original signal, that is, the length of xs. ns = nk

k 0.01 0.1 0.2 0.5

ns 20 208 417 1044

RMSE IDM 0.319 0.289 0.258 0.161

DCT 0.326 0.114 0.062 0.033

DFT 0.681 0.316 0.184 0.151

HWT 0.322 0.276 0.149 0.058

EBP 0.0 0.0 0.0 0.0

SNR IDM 3.134 3.461 3.876 6.206

DCT 3.063 8.756 16.172 30.058

DFT 1.468 3.168 5.438 6.608

HWT 3.102 3.617 6.706 17.195

EBP 4.8× 103 2.3× 105 4.6× 105 1.5× 106

Abbreviations: RMSE, relative mean square error; SNR, signal-to-noise

ratio.

of rdk-CV, we use another five-fold CV to decide the best L1 regular-

ization hyper-parameter for LASSO.

4.3.4 Measurement

We measure the signal reconstruction quality of the test set with

the relative mean square error (RMSE). RMSE =
||x−xr||2
||x||2 ) and signal-

to-noise ratio (SNR) (SNR =
||x||2

||x−xr||2 =
1

RMSE
) metrics. SNR can also be

calculated in dB as 10 log
10
(SNR). RMSE measures the ratio of the

residual/noise and the source. An SNR greater than 1.0 (0 dB) means

more useful information than noise. The reconstruction time T is also

recorded as a performancemetric.

4.4 Result

After the rdk-CV, the RMSE and SNR of all iterations are averaged

(Table 3). The result is consistent with Figure 4. At k = 0.01, 0.1, 0.2,

and 0.5, EBP has nearly zero RMSE. The SNRs are 4.8 × 103(37 dB),

2.3 × 105 (44 dB), 4.6 × 105 (47 dB), and 1.5 × 106 (52 dB), respec-

tively. EBP has much better RMSE and SNR than the non-adaptive

transforms.

During the CV evaluation, we also recorded the reconstruction time

at each iteration. The averaged time for the five transforms is plot-

ted in Figure 5. EBP has a comparable reconstruction time with DCT

(18.2 ms) and is slightly better than DFT (20.9 ms). HWT uses sig-

nificantly more time (126.3 ms) than others. That is because HWT

requires to pad the original signal to 2N dimensions (Ψ is also enlarged

from 2088 × 2088 to 4096×4096), so it takes more computation

time.

5 DISCUSSIONS AND FUTURE WORK

5.1 Identity matrix as a transform basis

In practice, we seldom use IDM. In the case study, we use IDM as

a theoretical baseline. IDM has the following properties: (1) Under

IDM, the latent space is the original signal space, so z = x. (2) In the

reconstructed phase,A = ΦΨ = ΦI = Φ and xr = zr , soAz = xs becomes

Φxr = xs. Because each row in Φ is one-hot encoding, that is, only

one element is 1, and all others are zero, the resulting xr is just

restoring each point in xs to its original position. (3) When k = 1, Φ

becomes a square matrix (kn = n), and xs is an n-dimensional vec-

tor. xs becomes a shuffled version of x. In the reconstruction phase,

the linear system Φxr = xs has equal numbers of unknowns and equa-

tions. Therefore, it has a unique solution, and xr is an exact restoration

of x.
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5.2 Determination of the required sample size

The EBP basis is generated by the SVD decomposition on the train-

ing set. One fundamental question worth further researching is how to

determine theminimumsample size.More sampleswill usually provide

more reliable and accurate information on the domain signal, while a

small sample size will produce unstable results due to randomness. To

determine the minimum sample size, we need to measure such “unsta-

bleness.” One approach is to find/design a statistic and calculate its

variance, for example, samples’ mean or signal reconstruction quality.

Another is to use bootstrapping to build surrogatemodels andmeasure

the deviation between surrogate models. How to align these different

approaches and find themost suitable one remains to explore.

5.3 CS under-sampling schemes

In CS, the sampling pattern/scheme determines the sensing matrix Φ.

This studyuses theuniformrandomsamplingpattern (denoteasΦU), as

it has been well tested and widely used. According to the CS theory, Φ

and the transform basisΨmust be incoherent. It can be proved thatΦU

has very low coherence (denote as μ) with common transform bases,

for example, DCT (𝜇 =
√
2), DFT (μ=1), andHWT (μ=1). However,ΦU

may not be the only choice. In other disciplines, such as magnetic reso-

nance imaging,17,18 multiple two-dimensional under-sampling schemes

have been studied. For spectroscopic data, designing and finding other

one-dimensional sampling schemes is another future research topic.

5.4 Basis selection from the dictionary learning
perspective

The core problem in CS signal reconstruction is to solve the linear sys-

tem Az = xs, where A = ΦΨ. Because Φ is a (kn×n) matrix, and Ψ is an

(n×n) matrix, A is a (kn×n) matrix. In most CS cases, k < 1, so A is “over-

complete,” that is, hasmore columns than rows.A is also “full row rank,”

with rank(A)= nk (its rownumber). Ifwe rewriteA asA = [ a1 a2 … an ],

Awill be a dictionary/framewith excessive entries (each column vector

is a dictionary entry). Therefore, we can find a sparse representation z

under dictionary A. In this sense, the CS basis selection equals a dictio-

nary learning problem.Wewill continue to research existing dictionary

learning techniques to find other excessive/redundant dictionaries

for xs.

5.5 Other adaptive transforms

Under EBP, each component in z is a linear combination of the origi-

nal signal’s n features. Besides this linear EBP transform, there are also

non-linear transforms. For example, recent work in the deep-learning

field, such as the auto-encoder, may be used to design non-linear trans-

forms. In the future, we will continue to research other possibilities for

CS basis design.

6 CONCLUSION

This study presents an EBP transform and its application in spectro-

scopic profiling signals. Like PCA’s component loading matrix, EBP has

an information concentration effect. In the case study, EBP has demon-

strated a remarkable performance. EBP’s z in the latent space is much

sparser than the non-adaptive transforms. At the same sampling ratio

k, EBP has the best signal reconstruction quality. In conclusion, EBP

is a competitive alternative to traditional non-adaptive transforms for

specific spectroscopic profiling tasks. It can further lower the sampling

ratio and reduce the overall measurement cost.
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